Preemptive Information Extraction using Unrestricted Relation Discovery
نویسندگان
چکیده
We are trying to extend the boundary of Information Extraction (IE) systems. Existing IE systems require a lot of time and human effort to tune for a new scenario. Preemptive Information Extraction is an attempt to automatically create all feasible IE systems in advance without human intervention. We propose a technique called Unrestricted Relation Discovery that discovers all possible relations from texts and presents them as tables. We present a preliminary system that obtains reasonably good results.
منابع مشابه
Being Lazy and Preemptive at Learning toward Information Extration
This thesis proposes a novel approach for exploring Information Extraction scenarios. Information Extraction, or IE, is a task aiming at finding events and relations in natural language texts that meet a user’s demand. However, it is often difficult to formulate, or even define such events that satisfy both a user’s need and technical feasibility. Furthermore, most existing IE systems need to b...
متن کاملUnsupervised Discovery of Relations for Analysis of Textual Data in Digital Forensics
This dissertation addresses the problem of analysing digital data in digital forensics. It will be shown that text mining methods can be adapted and applied to digital forensics to aid analysts to more quickly, efficiently and accurately analyse data to reveal truly useful information. Investigators who wish to utilise digital evidence must examine and organise the data to piece together events...
متن کاملProposition Knowledge Graphs
Open Information Extraction (Open IE) is a promising approach for unrestricted Information Discovery (ID). While Open IE is a highly scalable approach, allowing unsupervised relation extraction from open domains, it currently has some limitations. First, it lacks the expressiveness needed to properly represent and extract complex assertions that are abundant in text. Second, it does not consoli...
متن کاملIntroduction Welcome to the First Aha!-workshop on Information Discovery in Text!
Recent approaches to relation extraction following the distant supervision paradigm have focused on exploiting large knowledge bases, from which they extract substantial amount of supervision. However, for many relations in real-world applications, there are few instances available to seed the relation extraction process, and appropriate named entity recognizers which are necessary for pre-proc...
متن کاملA New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006